Exact N-modal Itineraries Generation for Ad Hoc Interconnection of Transportation Networks

Idriss Hassine and Philippe Canalda
Institut FEMTO-ST (UMR CNRS 6174)
Université de Bourgogne Franche-Comté
Multimedia Development Center NUMERICA
1, Cours Louis Leprince-Ringuet, 25200 Montbéliard, France
Email: idriss.hassine.2015@ieee.org, philippe.canalda@femto-st.fr

Abstract

CIMO is a combinatorial system which computes optimal multimodal itineraries consisting in itineraries which are sorted, multimodal and trans-territorial. In this work we propose the formalism of ad hoc multimodal itinerary problematic, the multi-constraints based dynamic programming algorithm approach, and a realistic evaluation of the solution proposed which address new aggregation of operational transportation territories. The solution is based on a dynamic programming algorithm "cut","price" and "share". This solution is multi-objectives and multi-constraints. Progressive versions of this algorithm are proposed following a methodological approach that enables evaluation of efficiency and complexity's gain. Test benchmarks are run to validate the contributions, until the overall system shows its capacity to propose multimodal itineraries for real metropolis area. Other parameters are defined as the speed up and the relative gain. This work also provides a set of evaluations of CIMO's versions: from a real illustration based on two extractions transport networks with small overlap (bus) and connected transversely by two other modes (train and cars), to a simulation of territorial areas comprising the territories served by 3-modes transport services (bus, car and train) of AOTS prefectures and sub-prefectures (2×800 stations, 2×20 lines, journey time-tabling's ranging from 6 am to 20 pm , lines of trains and buses serving longitudinally these 2 networks). This study shows that an optimal itinerary can be calculated with an exact, dynamic programming algorithm "cut" and "price" and "share" which generates 3-modes itinerary over two connected transportation networks, deserving $\mathbf{3 0 0 , 0 0 0}$ inhabitants.

I. A step towards a trans-TERRITORIAL AND MUltimodal Itinerary calculator...

The on-the-fly generation of optimal multimodal itineraries is a very complex issue that arouses great interest from the scientific community and also from the Authoritative Transport Organization's commmunity (ATOs for short). Nowadays, innovative operational systems tackle, dynamically, the greatest numbers of multimodal arrangements (bus, train, triggered transport, carpooling, carsharing, and soft modalities such as walking or bike-sharing). They also face the new aggregation of territories, wherin ATOs must collaborate. They must offer a service that takes into account dynamic requests and very versatile information (advance/delay aleas, forecasting congestion, run-time application of itineraries,...).

A. Living territories, new mobilities, and innovative mobilityhelp services

We travel to work, to study, for leisure and for shopping. We travel alone or accompanied. Our movements are dependent on points of interest such as home and commercial centers. They are dependent on resources (finance and transportation), and also public and collective transport options serving human living area (waypoints, parking).
To address the need for mobility in urban areas or elsewhere, we use several modes of transportation: from private vehicle, public and collective transportation, to bike or walk on foot. Among the constraints of our movements, the principal is to be on time for an appointment. In order to satisfy this constraint we must estimate the best times to exit our home and the best itinerary to be followed to arrive at destination on time.

In this study, we address the opportunistic use of public transportion. It comes to solve the problem of multimodal itinerary calculations from offers arising from various ATOs. The trans-territorial movements using public transport are becoming commonplace within a modern society in which family members work in various places, and where urban and suburban areas federate their life way-points, and transportation services.

B. An illustrative example extracted from the real urban area of Belfort-Montbéliard (AUBM)

AUBM's area is composed of three major cities: Belfort, Montbéliard and Héricourt. The whole area hosts 300,000 inhabitants. It belongs to the Franche-Comté region.

The transport authorities of the urban area are diverse and they have difficulties in deploying multimodal itinerary calculator. By only considering here three modes of transportation, not less than 6 ATOs are involved in: the Transport Company of Montbéliard (CTPM) which delegates the exploitation to Keolis, the Mixte Syndicate of Public Transportation (SMTC) which delegates the exploitation to the Optymo network, the Mixte Syndicate of AUBM's Wide Area (SMAU), which coordinates the global mobility, the SNCF (part of Keolis) which operates train network under the controle and authority of Franche-Comté region and Alsace's one, and finally Illicom platform that provides information on the cross-department
mobility (regional and inter-regional train, CTPM and Opymo buses, transportation on-demand and bike circuits).
From these statements, we understand that a transport user has to manipulate several information systems. Thus, the data management is an issue that belongs to many ATOs and transportation operators, with their own and specific equipments and information systems.

A master student of Université de Bourgogne FrancheComté ${ }^{1}$, who lives in Belfort and follows courses located over 2 sites, the Technological University of Belfort-Montbéliard (UTBM - Belfort site) and the University of Franche-Comté (UFC - Montbéliard site) is forced to solicitate these ATOs to achieve his home-to-work mobilities. The student lives close to the "Haut de Belfort" bus' station. He has to join, 3 mornings a week, the "Donzelot station" which deserves the Montbéliard university site. Delivered courses start at 8h30 a.m.. Obviously, a student has to be present a slightly before this time. Practically, the first step is to take the bus (Optymo network) at "Haut-de-Belfort" station to the Belfort train station. Then, in a second step, he must take a train (SNCF) from Belfort Train Station to Montbéliard station through Héricourt. Arriving at Montbéliard train station, he must take another bus (network CTPM) to arrive at Donzelot, the nearest station to the university. His multimodal itinerary is at least equal to three. Numerous lines deserve the train stations, the student residence and the university, varying by frequency or by huge and specified time-tabling.

C. On the ground, operators must exchange their transport network data and mobility services

Currently, there are 3 operating systems for calculating itineraries. The Information System (IS) of the CTPM calculates itineraries only on its bus network, ditto for the Optymo, but for Illicom platform, which is a system of services provided jointly by CTPM, Keolis and Montbéliard Agglomration, it treats the bus network of Montbéliard, the SNCF train lines between Strasbourg, Delles and Lyon, through Belfort, Héricourt and Montbéliard Train Stations. Car circuits are operated by the departments "Territoire de Belfort" and 'Doubs", to complete the main tri-modal network that contribute joining the two cities. Last but not least, Belfort and Montbéliard, distant of 16 km , are accessible through the A36 motorway, or by bike-ways.

The conclusion is that the use of these systems provides results that are neither consistent nor dynamic. Moreover, there is no IS offering simultaneously all modes of transport in the emerging metropolitan urban area of Belfort-Montbéliard.
D. The underlying scientific problem is never completely formalized, and multimodal itinerary calculators are facing increasing complexity of data (heterogeneous modes, transport lines, timetables, scattered data)

The research and the latest innovations in ITS (Intelligent Transport System) aimed at developping multimodal itineraries

[^0]mainly in two aspects, firstly in a static context, and secondly in a dynamic context[2], [5], [13]. In the static context, dynamic risks are rarely apprehended [13] (advances, delays, cancellation, the high-level, failure, triggered new race), and combinations of modalities considered (buses, trains, car, subway, bicycle, transportation-on-demand, carpooling, walking buses, parking, ...) vary from one transport system to another ([5] = Park-n-Ride, [12] = Bus + Train + Plane), and the respective characteristics of the modalities (number of lines, number of trips, number of stations, timetables by station and lines), and the natures of lines (regular or triggered, with partial or global "cabotage", with or without correspondences). In the dynamic context, other factors complexify the problem : the nature of the risks considered and their sizes, the frequency of information refreshment, the speed of calculation and / or the provision of satisfactory operating itineraries to supply constraints and demand constraints, the quality of information (confidence levels, life expectancy, robustness).
Transverse to the static and dynamic contexts, many other characteristics complicate the formalization of the problem, and influence combinatorial techniques and solutions implemented, as: the properties of field graphs representing road infrastructure, parking spaces and modal transfers, parking spaces or intermodal exchange, modeling modes of transport and their connections.
Today the interconnection of operating systems, and their aggregated areas, the scale of mobility considered at international level [8], [9], at the level of interconnecting the cities [3], [4], at the level of connecting towns and "outline" networks, locally with its great diversity of relevant modalities (soft and triggered transport modes), all of this constitutes much formal and experimental challenges, where difficulties of access sparsed data and specialized demand from users are not the least of pitfalls. The interconnection of local transport networks are not addressed pragmatically ${ }^{2}$ and no known theoretical solution are deployed and operated which address, realistically, the numerous and practiced modalities, and which consider the actual need of users' mobility (new metropolitan poles, communities of communes, evolving departments or regions).

Among major algorithmic solutions, we mainly consider exact approaches based on the calculation of k-best itineraries for a pair (origin, destination), taking into account [14], or not, time window and timetables of means of transport [5], [6]. Other works applied the Branch and Bound and the ant colonies techniques [15], either based on enumerative approach [16], or parallel's one. These works treat the bus, take into account space optimization related to the transport request [10]. In [14], if the time windows of the application are rarely included, with static timetables Pick-Up or Delivery at stations, the maximum number of modalities reports in an itinerary are less or equal than 2.

In [18] Christian Artigues follows another approach to render more efficient the enumerative approach. He uses an automata-based approach by using four modes of transporta-

[^1]tion: Bus, car, foot and subway. A set of constraints on itineraries are defined: for example the private car can only be used once or subway can be only used once during the trip. Although these constraints affect strongly the simplification of problem complexity, they are not relevant for the itineraries involved round trip. These constraints remain applicable or only limited in the context of big cities, they are not relevant to new cities. In [19] the automata-based approach is used by incorporating the round trip's notion in exploring possible itineraries which presents the strength of this work in the field of intelligent transport systems. However, the itinerary calculation is mainly based on shortest itinerary's criteria in terms of distance, itinerary cost was not expanded to include number of correspondences, the effective transport time, the travel time...

In the remainder of this review which is an extended version of [1], we will first characterize the input data of the problem. We will formalize the multi-objective problem and corresponding multi-constraints. Then we will present the dynamic programming algorithm Cut\&Price\&Share by adopting an incremental approach. A series of detailed tests was performed on a real illustartion extracted from the urban area Belfort Montbeliard explain the principle of each version .A series of evaluations will allow to evaluate the Cut conditions efficiency, the performance of the shares of common sub-calculations, accelerating the termination of the itinerary generator. A focus will be put on the influence of using ordered stations. We will describe the test generator. We will conclude with an analysis of the proposed approach and we will discuss the future works.

II. HOW TO FORMALIZE THE PROBLEM OF OPTIMAL

 ITINERARY GENERATION WHEN CONSIDERING REALISTIC N-MODAL AND TRANS-TERRITORIES ITINERARY?We introduce the CIMO system (Calculateur d'Itinéraires Multimodaux Ordonnés) which is calibrated to address a combination of three-to-four networks (OPTYMO, CTPM, Keolis, and Illicom) for modes ${ }^{3}$ among bus, train and car.

A. Extracting a 3-modal Network of AUBM

We modeled our first extraction of the experimentation territory by a prototype of 9 stations distributed as follows:

- 3 bus stations in Belfort: "Multiplexe Belfort", "Foch Belfort", et "Liberté Madrid Belfort".
- 3 bus stations in Montbéliard: "Temple", "Jean Moulin", et "Place Ferrer".
- 3 train stations between Belfort and Montbéliard : "Belfort Gare", "Hricourt", and "Montbéliard Gare".
In this model it is assumed that the time window is defined as a sub-range from 6 a.m. to 8.30 a.m.
3 lines are extracted from the OPTYMO BUS' network of Belfort:
- OPTYMO bus' line number 1:

$$
\text { "Foch Belfort" } \rightarrow \text { "Gare Belfort" }
$$

[^2]"Gare Belfort" \rightarrow "Foch Belfort"

- OPTYMO bus' line number 2 :
$" M u l t i p l e x e " \rightarrow$ "Liberté Madrid"
"Liberté Madrid" \rightarrow "Multiplexe Belfort"
- OPTYMO bus' line number 3 :
"Multiplexe Belfort" \rightarrow "Gare Belfort"
"Gare Belfort" \rightarrow "Multiplexe Belfort"
4 lines are extracted from the CTPM BUS' network of Montbéliard:
- CTPM bus' line number 1 :
"Gare Montbéliard" \rightarrow "Temple"
"Temple" \rightarrow "Gare Montbéliard"
- CTPM bus' line number 2:
"Place Ferrer" \rightarrow "Temple"
"Temple" \rightarrow "Gare Montbéliard"
- CTPM bus' line number 3:
"Gare Montbéliard" \rightarrow "Place Ferrer"
"Place Ferrer" \rightarrow "Gare Montbéliard"
- CTPM bus' line number 4:
"Place Ferrer" \rightarrow "Jean Moulin"
"Jean Moulin" \rightarrow "Place Ferrer"
For the SNCF TRAIN' network one line was extracted between Belfort and Montbéliard:
- "Gare Belfort" \rightarrow "Gare Montbéliard": Ter95860, Ter94008, Ter94832 et Ter94014.
- "Gare Montbéliard" \rightarrow "Gare Belfort": Ter94003, Ter94007, Ter95863, Ter94833 et Ter94103.

B. The internal data and data exchange interface

The set of all the lines of transport of the considered network:

$$
\text { LigneTransport }=\left(L T_{1}, L T_{2}, \ldots, L T_{j}, \ldots, L T_{l t}\right)
$$

with \mid LigneTransport $\mid=l t \in \mathbb{N}$
CIMO returns an ordered list of itineraries:
Itins $=\left\{\right.$ Itn $\left._{1}, I t n_{2}, \ldots, I t n_{I t}\right\}$
with \mid Itins $\mid=I t \in \mathbb{N}$
The set of all the stations in the considered transport subnetwork: $S_{T s}=\left(S_{1}, S_{2}, \ldots, S_{s}\right)$ with $\left|S_{T s}\right|=s \in \mathbb{N}$.
A transport line $L T_{j}$ is formed of an ordered list of stations, such as: $L T_{j}=\left\{S_{j_{1}}, \ldots, S_{j_{l t_{j}}}\right\}$ where $l t_{j}$ is the size of the line $L T_{j}$ corresponding to the number of stations of the line. An itinerary is a sequence of pairs :
$\left(\left(L T_{i}, \operatorname{Sens}_{L T_{i}}, S_{P U, \text { orig }}, d_{P U}\right),\left(L T_{i}, \operatorname{Sens}_{L T_{i}}, S_{D, d e s t}, d_{D}\right)\right)$ where $L T_{i}$: indicates the transport line number i used, $S_{e n s}^{L T_{i}}$ indicates the direction ${ }^{4}$ of the line $L T_{i}$ used, $S_{x, y}$: indicates the station number x, y, with x specifying if it is a pick-up (PU) or a delivery (D), and y specifying the origin position or the destination, d_{x} : indicates the date of picking-up or delivering, at this station S_{x}.
Note : The pick-up time always precedes the time of delivery. In a itinerary there is always $n(\geq 1)$ of couples PU\&D. The time between a D and the next PU corresponds to waiting time, or even to the intermodal duration. The time between

[^3]a PU and a D is considered for calculating the actual travel time, i.e. the actual time spent when a traveler is moving according to the modality (of each couple).

An itinerary $I t n_{i}$ is presented as follows:

$$
\begin{gathered}
\operatorname{Itn}_{i}=\left(\left(L T_{i_{i t i n, 1}}, \text { Sens }_{i_{i t i n, 1}}, S_{i_{1}}, d_{i_{1}}\right)\right. \\
\left(L T_{i_{i t i n, 2}}, \text { Sens }_{i_{i t i n, 2}}, S_{i_{2}}, d_{i_{2}}\right) \\
\vdots \\
\left.\left(L T_{i_{i t i n, l}}, \text { Sens }_{i_{i t i n, l}}, S_{i_{l}}, d_{i_{l}}\right)\right)
\end{gathered}
$$

It is composed of an even number l of quadruplets. $d_{i_{1}}$ is the date of PU or D at the station $S_{i_{l}}$ We consider the timetable $t h$, the list of time d_{i} of passage at the station $S_{j_{k}}$ with a mode of transport associated to the line $L T_{j}$, and its direction is $\operatorname{Sens}_{L T_{j_{r}}}$.
Also, we consider the matrix $\operatorname{Mod}[i][j]$ of displacement between a station S_{i} and another station S_{j}. This matrix carries a certain amount of information, and part of them are derived from the input data, as the timetables of lines' passages at a station S_{i} and the direction belonging to the line $S_{i} \rightarrow S_{j}$. Each line is associated with a single indexed transport mode (Bus, Train, Car,...). Secondly, this matrix Mod carries information on shortest(s) path(s) to travel from S_{i} to S_{j} : existence of a multimodal itinerary and the time slot of the transport service operation. Therefore, the element of the matrix Mod gives access to features and following attributes:

- modality (m) : boolean: returns true if the modality m, with $m \in\{$ Bus, Train, Car, $\ldots\}$, deserves the station S_{i} in the direction of station S_{j};
- th $\left(\operatorname{mode}_{m}\right): d a t e[][]:$ returns the timetables of passage of all races for the mode mode $_{m}$;
- Mod $[i][j] . t h(m) \cdot n e x t _i n_{-} t h(h a)$: date: returns the next passage's date for the modality m, at station S_{i}, in the direction of S_{j}, that corresponds and succeeds to the date $h a$;
- $\operatorname{Mod}[i][j]$. tet $[m][c]$: date: returns the journey effective time of the itinerary c, of transport mode m, between stations S_{i} and S_{j}.
As illustrations, the first part of the Annex represent an extraction of real timetables issued from 8 bus or train lines of the networks OPTYMO, CTPM and SNCF, for a time periode ranged from 6 h to 9 h in the morning. The indexation of the 9 considered stations are : S_{0} : Multiplexe Belfort, S_{1} : Gare Belfort, S_{2} : Gare Montbéliard, S_{3} : Temple Montbéliard, S_{4} : Hricourt, S_{5} : Foch Belfort, S_{6} : Place Ferrer Montbéliard, S_{7} : Liberté Madrid Belfort, et S_{8} : Jean Moulin Montbéliard.

C. Demand for mobility and qualitative objectives of multimodality

In the sequel, we present the itineraries generator algorithm of our CIMO calculator which addresses multiple objectives such as mobility request specifications, and qualitative objectives such as : not to arrive later than a specified date at the destination station, minimization of the number of modalities, minimazation of the overall trip time, and maximization of the
correspondence waiting time. Last but not least, CIMO has to provide itineraries in a reasonable time.

The objectives of this algorithm are multiple:

1) consider the departure station and the arrival station;
2) consider a time window (TW for short) of the itinerary request, which is composed of the earliest departure time from the source position, and the latest arrival time to the destination position;
3) minimize the number of modal transfers: which is equivalent to minimize the number $L T_{l}$ of quadruplets in the itinerary Itin $_{i}$.
4) minimize the travel time $t t$ (including waiting time during correspondence(s)):

$$
\begin{equation*}
t t=d_{i_{L T_{l}}}-d_{i_{1}} \tag{1}
\end{equation*}
$$

$d_{i_{L T_{l}}}$: is the delivery date (D) to the destination station $S_{i_{L T_{l}}}$,
$d_{i_{1}}$: is the PU date at the departure station $S_{i_{1}}$.
5) minimize the effective time of transportation tet (excluding waiting time during correspondence(s)) :

$$
\begin{equation*}
t e t=\sum_{k=1}^{n}\left(d_{i_{l_{2 k}}}-d_{i_{l_{t_{2 k-1}}}}\right) \tag{2}
\end{equation*}
$$

with $n \in \mathbb{N}$, et $l / 2=n$
6) maximize the sum of waiting times at correspondence's stations tac

$$
\begin{equation*}
t a c=\sum_{k=1}^{n-1}\left(d_{i_{l_{2 k+1}}}-d_{i_{l} t_{2 k}}\right) \tag{3}
\end{equation*}
$$

7) and satisfy all of the following constraints:

- those concerning one pair of PU and D positions in an itinerary:
the same station cannot appear in both the PU and D 4-uple : $\forall j \in\left[1, \frac{l}{2}\right]: j, l \in \mathbb{N}$

$$
\begin{equation*}
S_{i_{2 j-1}} \neq S_{i_{2 j}} \tag{4}
\end{equation*}
$$

the D-date is upper than the PU-date:

$$
\begin{equation*}
d_{i_{2 j}}>d_{i_{2 j-1}} \tag{5}
\end{equation*}
$$

the line remains identical:

$$
\begin{equation*}
L T_{i_{2 j}}=L T_{i_{2 j-1}} \tag{6}
\end{equation*}
$$

idem for the direction:

$$
\begin{equation*}
\operatorname{Sens}_{i_{2 j}}=\text { Sens }_{i_{2 j-1}} \tag{7}
\end{equation*}
$$

- those concerning two consecutive pairs, $\forall j \in$ $\left[1, \frac{l}{2}-1\right]: j, l \in \mathbb{N}$,
the same PU station appears in the D station :

$$
\begin{equation*}
S_{i_{2 j}}=S_{i_{2 j+1}} \tag{8}
\end{equation*}
$$

PU, which follows a D , can be operated simultaneously:

$$
\begin{equation*}
d_{i_{2 j+1}} \geqslant d_{i_{2 j}} \tag{9}
\end{equation*}
$$

in an itinerary, a line is used once:

$$
\begin{equation*}
L T_{i_{2 j+1}} \neq L T_{i_{2 j}} \tag{10}
\end{equation*}
$$

- those applyed to the entire itinerary : $\forall k, m, j \in \mathbb{N}$ avec $j \in\left[1, \frac{l}{2}-1\right], k \neq 2 j-1, m \neq 2 j$
we do not take the same line twice

$$
\begin{equation*}
L T_{i_{k}} \neq L T_{i_{m}} \tag{11}
\end{equation*}
$$

the same station cannot appear two times at PU's position or D's one, $\forall k, m, j \in \mathbb{N}$ with $j \in\left[1, \frac{l}{2}-\right.$ 1], $k \neq 2 j, m \neq 2 j+1$

$$
\begin{equation*}
S_{k} \neq S_{m} \tag{12}
\end{equation*}
$$

- constraints which concern the number of modalities, the tet and the best itinerary:
the number of modal transfers, and thus the number of 4 -uple $l_{\text {Itini }}$ in a itinerary i, must be greater or equal to the number of 4 -uple of Best-Itinerary $l_{\text {Best-Itin }_{i}}$:

$$
\begin{equation*}
l_{\text {Itin }_{i}} \geq l_{\text {Best_Itin }_{i}} \tag{13}
\end{equation*}
$$

in case the numbers of modalities are identical, tet in Itin $_{i}$ must be greater than or equal to tet of Best_Itin ${ }_{i}$.

$$
\begin{equation*}
\text { tet }_{\text {Itin }_{i}} \geq \text { tet }_{\text {Bes_I_Itin }_{i}} \tag{14}
\end{equation*}
$$

- finally, the constraint of existence of a chain of modalities, and the constraint of existence of coherent timetables passages between two consecutive stations of an itinerary of length l :
$\forall j \in\left[1, \frac{l}{2}-1\right], \exists$ a modality m and a schedule of passage $h p$ of a race c such as:

$$
\left\{\begin{array}{cc}
\text { constraints } 2 j-1,2 j & \left\{\begin{array}{l}
M o d[2 j-1][2 j] \cdot \operatorname{modalité}(m)=\text { true } \\
d_{1} \leq h p \\
h p+\text { tempsdetrajet }\left(S_{2 j-1}, S_{2 j}, m, c\right) \leq d_{2 j} \\
\text { constraints } 2 j, 2 j+1
\end{array}\right. \tag{15}\\
d_{2 j+1}>d_{2 j}
\end{array}\right.
$$

III. THE DYNAMIC PROGRAMMING ALGORITHM CUT AND PRICE AND SHARE OF CIMO

In this section we present the more achieved version of the algorithm (among four versions). The proposed algorithm is based on an exhaustive list of all the possible paths from a departure station from to an arrival station target, according to a given time window, statis timetables, operationnal constraints and objectives.
The input variables are:

- from: (the index of) the departure station;
- depth: number of modal transfers;
- target: (the index of) the arrival station.
- mat : the displacement matrix Mod. Its size is $s * s$ where s is the number of stations in the network;
- horaireDepart : is the departure time;
- horaireArrivée : the desired arrival time.

The algorithm 1 represents the version v3.0 (APDCPS_v3.0) of the dynamic programming algorithm

Cut\&Price\&Share for generating all multimodal itineraries and satisfying the constraints. We denote by:

- sorted stations : all stations $S_{T s}$ are sorted by decrasing number of correspondence opportunities (oc), and then by the decresing shortest distance to the target station;
- Table-blocage : a table of boolean. Its size is s, initialized with False values. It serve not to pass through the same station 2 times in an itinerary;
- price $2^{\prime}\left(\begin{array}{c}l \\ t e t \\ t t\end{array}\right)$: calculates the itinerary cost (to be detailed Part 4);
- Best-Itin: the best itinerary calculated during run-time calculation, or at the issue;
- Search-next-mode-transportation is a function that returns the next possible mode satisfying all the constraints, between two stations S_{i} and S_{i+1} of an itinerary Itin.

```
Algorithm 1 Dynamic Programming algorithm
Cut\&Price\&Share (APD-CPS_v3.0)
    : \(\operatorname{price}_{\text {min }}\left(\begin{array}{c}l \leftarrow \infty \\ t e t \leftarrow \infty \\ t t \leftarrow \infty\end{array}\right)\)
    Itin \(\leftarrow \emptyset\)
    Best-Itin \(\leftarrow \emptyset\)
    Search-Itineraries(Position from, int depth,
    MatPoint2Point mat, Position to, Time horaireActuel, Time ho-
    raireDepart, Time horaireArriveePlusTard, Itinerary Itin)\{
    Itin \(\leftarrow\) Itin+from
    if from.equalTo(to) then
        for \(\mathrm{i}=1\) to depth do
            Search-next-mode-transportation(mat,Itin,i,i+1,Time
            ha=horairActuel)
            Best-Itin \(\leftarrow\) Itin
        end for
        price \(_{\text {min }} \leftarrow\) price \(^{\prime}{ }^{\prime}(\) Itin \()\)
    end if
    table-blocage[from] \(\leftarrow\) True //block the from position (CUT-V0:
    Do not go through the same station twice in a itinerary)
    for \(S_{i}\) in ordered stations do
        if \(\left(\left(\operatorname{mat}[f r o m]\left[S_{i}\right]\right.\right.\).modality(Bus)=true or
        \(\operatorname{mat}[\) from \(]\left[S_{i}\right]\).modality(Train)=true) and
        (table-blocage[i]=False)) then
            (CUT-V2+Price2')
            if price \(^{\prime}(\) Itin \() \leq\) price \(_{\text {min }}\) then
                Search-Itineraries \(\left(S_{i}\right.\), depth+1, mat,to,
                    horaireActuel,horaireDepart,
                    horaireArriveePlusTard,Itin)
            end if
        end if
    end for
    table-blocage[from] \(\leftarrow\) False //unblock from position
    : \}
```

This is a recursive algorithm, based on an in-depth course. It realizes a path considering all network stations. If there is a station S_{i} for which there is an accessible modality (bus line or train line) and a schedule of PU from the current position from, then we realize the recursive call by changing the position and depth as follows:

- the from position becomes S_{i}, the next more satisfying station, and we then seek for completing the itinerary from the station S_{i}. We block S_{i}, not to pass twice;
- depth=depth +1 , the depth is increased by the modal step.

The algorithm searches for possible intermediate stations from the new start position S_{i}. This procedure is repeated until we reach the destination position to.

Once the connection is verified, we prepare an itinerary from the starting station from to the arrival station to. It displays the itinerary by posting, at each station S_{i} the type of transport mode that passes through this station, the time d of PU according to the transport mode selected, and the waiting time for this mode of transport to pass through S_{i}. After displaying the obtained itinerary, we unblock gradually the last intermediate station of the best and correct itinerary. The remaining intermediate itinerary (which can be considered as a common or shared parts) can be used to calculate other itineraries which can improve, incrementally the best itinerary.

When displaying an itinerary, to go from a station S_{i} to another station S_{i+1}, the current time is taken into account which is the traveler's arrival time at station S_{i}. The algorithm seeks for the mode of transport, either the bus or the train which catches passangers at station S_{i+1}. If the mode of transport is the bus (resp. train or foot, or car), the algorithm seeks the next bus and displays its number and schedule of the passageway at the station S_{i}. Then it calculates the waiting time at the station between two consecutives modes used to operate this current itinerary.

A. Theoretical Complexity of APD-PS v3.0

The complexity depends on various parameters:

- $\left|S_{T s}\right|=s$: number of stations of the model;
- $S_{i}: i$ is the index of the station, $i \in[0, s-1]$;
- $S_{\text {from }}$: from is the index of the departure station;
- $S_{t o}$: to is the index of the arrival station;
- q : the number of races of the line $L T$.

The general formula of the complexity can be modeled by the following formula :

$$
\begin{align*}
T\left(s, S_{\text {from }}, \text { depth }, S_{t o}\right)= & \sum_{i=0}^{s-1} T\left(s, S_{i}, \text { depth }+1, S_{t o}\right) \Omega_{S_{\text {from }}}^{S_{i}} \\
& +\sum_{i=0}^{s-2} A_{s-2}^{i} * \overline{n b S / L} * q \tag{16}
\end{align*}
$$

with :

- A_{s-2}^{i} is the arrangement of i stations amongst $s-2$ stations, excluding stations from and to;
- $\Omega_{I d S_{f r o m}}^{i}=1$ if there is a mode of transport returns the index station from to the index station i, otherwise it is equal to 0 ;
- $\overline{n b S / L}$ is the average number of stations per line.

IV. A territory generator to evaluate different VERSIONS OF ALGORITHM APD-CPS

We have realized a random data generator. We test each version of algorithms by varying number of network stations, the number of lines, the arrival station, the departure station and the time window.

We denote by:

- nbS: number of network stations;
- nbL: number of network lines;
- $\overline{n b S / L}$: the average number of stations per line;
- $\overline{n b C / L}$: the average number of correspondences per line;
- nbCTotal: the total number of correspondences;
- $n b C o m b-i t$: the total number of all combinations of itineraries ;
- from and to: the departure station, resp. arrival's one ;
- Temps_exec: the necessary time to explore all itineraries from the departure station to the arrival station and to display them;
- nbIt: number of calculated itineraries.

Tests are performed on the Java platform with a machine DELL i7 ${ }^{5}$. The table IV page i (column Execution time of APD-CPS v1.0) identifies initial results. These first results are basically made on the first set of tests extracted from a realistic trimodal network of Urban Area Belfort-Montbéliard. For a request established by the traveler with a departure station is Liberte Madrid (Belfort) and an arrival station is Temple (Montbéliard), APD-CPS v1.0 returned two itineraries: The first itinerary is with a modality number $l=3$ and an effective time of transportation tet $=40 \mathrm{~min}$, the second itinerary is with a modality number $l=4$ and an effective time of transportation tet $=40 \mathrm{~min}$. This version calculates all possible itineraries based on the corresponding time window without applying constraints on the modality number or l or the effective time of transportation tet.

The table V page ii (column Execution time of APD-CPS v1.0) identifies results obtained by applying this version on the random data generator. This table resumes the exponential behavior of time calculation and complexity of our propsoed algorithm, which combines itineraries generation modulo the existence of modalities, and the instanciation with effective PU and D times, and the in incremental display of best intineraries computed.
To address pramatically this complex problem study, we propose several gradual solutions. The objective is to demonstrate the feasibility of apprehending the calculation multimodal itinerary (nb modes ≥ 3, and a number of modal transfers for unlimited itineraries) on aggregatable operating transport territories (Sizes of 1000 stations at least).

Version 1.2 of Algo APD-CPS realizes and considers the following items.

- We denote by $n M$ the maximum number of modalities in an itinerary. If this number is exceeded, then we abandon the constitution of the current itinerary. For example for such itinerary if $n M>3$, it will be useless to continue to follow this itinerary because we always search for itinerary with a smaller number of modalities. That reduces the risk of a correspondence, and this also reduces the financial pressure on the traveler that should possess a fixed or specific ticket.

[^4]- The Cut Version1.2 (CUT-V1) is modeled by the following formalization: $\forall S_{i_{k}}, S_{i_{m}} \in$ Itin $_{i}$
$l \leq 3 \wedge\left(\forall k, m, j \in \mathbb{N}, j \in[1, l / 2], k \neq 2 j, m \neq 2 j+1: S_{i_{k}} \neq S_{i_{r}}\right.$

The table IV page i (column Execution time of APDCPS v1.2) identifies initial results of tests extracted from the realistic trimodal network. For the same request established in the example of version 1.0, APD-CPS v1.2 returns only one itinerary. Comparing to the result provided by APD-CPS v1.0, only the first itinerary (modality number $l=3$ and an effective time of transportation tet $=40 \mathrm{~min})$ has been selected because it coincides with the constraint of $l \leq 3$. The second itinerary (modality number $l=4$ and an effective time of transportation $t e t=40 \mathrm{~min})$ has been eliminated because $l>3$.
The table V page ii (column Execution time of APD-CPS v1.2) identifies results obtained by applying this version on the random data generator.
The evaluation of version 1.2 shows the influence of the calculated solutions' display. It also shows the correlation between a test set, of small size, which is extracted from a real network, and the operating network of a similar size generated by our generator tests. Separating the display phase and the instanciation (modalities and real PU and D times), from the incremental in-depth course calculation of optimized itineraries is of greatest interest. Hence, APD_CPS version 1.2 breaks the complexity by reducing the computation time. For example, for a model of 13 stations, CIMO (Test7) consumes from 2 minutes to 0.0133 seconds to solve the multimodal request. If we compare the number of displayed itineraries $n b I t$, for the Test7, we decrease the displays from 74895 to 22 . Note that, in this version 1.2, cost assessment (number of modalities) also avoids the reconstruction of all the combinations of the modalities of each portion (PU, D), and schedules PU or D.
We denote by Best_Itinerary, the best itinerary before generating the display. This itinerary is also composed by the number of modalities (or modal transfers), as well as the tet. The display's phase is improved in this version by displaying only the calculated itineraries which the cost (number of modalities, and the tet), improves the solution Best_Itinerary.
We display the itinerary composed of a minimum number of stations. We can minimize the number of correspondences of lines. An additional track to break the complexity, is to extend the Cut on this number of modalities, and so on Price that considers the number of modalities and also the tet. This element is the main feature of version 2.0 of the algorithm APD_CPS.
These first series of tests can be criticized, at this state, because of bounded by targeted very large size networks. We have to reduce the complexity influence of passage's frequency of transportation modes, because even for the extracted sun-
network considered, more than 10 bus passes through any station and for a time window of 2 hours.

So, to render possible managing a real transport network with a bigger number of stations, we propose Version 2 of the ${ }_{n}$ algorithm. We introduce a new objective of optimal itinerary which minimizes the number of modalities and the cost of effective time of transport (tet). This Price is considered before the recursive call, to extend the previous Cut, with the hopes to speed up the calculation of the best multimodal solution. We estimate the length path during itinerary calculation. This cost promotes, initially the minimization of the modalities' number, then the tet minimization. if this cost exceeds the minimal cost of the current Best_Itinerary, we cut the recursive call.
The Cut (CUT-V2) is formalized as, $\forall S_{i_{k}}, S_{i_{m}} \in$ Itin $_{i}$:

$$
\begin{gathered}
\text { Itin }_{i} \rtimes_{1}{\text { Best }- \text { Itin }_{i} \wedge}_{\left(\forall k, m, j \in \mathbb{N}, j \in[1, l / 2], k \neq 2 j, m \neq 2 j+1: S_{i_{k}} \neq S_{i_{m}}\right)}
\end{gathered}
$$

Note that $: \rtimes_{1}$ is a law that sorts all itineraries Itins according to price $2\binom{l}{$ tet } defined as follows :

$$
\begin{gathered}
\operatorname{Itin}_{j} \rtimes_{1} \text { Itin }_{i} \Leftrightarrow \\
\left(\left(\text { Itin }_{i} \cdot l<\text { Itin }_{j} . l\right)\right) \vee \\
\left.\left(\text { Itin }_{i} . l=\text { Itin }_{j} . l\right) \wedge\left(\text { Itin }_{i} . \text { tet }<\text { Itin }_{j} . \text { tet }\right)\right)
\end{gathered}
$$

\rtimes_{2} extends the previous law by ordering all itineraries Itins according to price $2^{\prime}\left(\begin{array}{c}l \\ t e t \\ t t\end{array}\right)$:

Itin $_{j} \rtimes_{2}$ Itin $_{i} \Leftrightarrow$ $\left(\left(\right.\right.$ Itin $_{i} . l<$ Itin $\left.\left._{j} . l\right)\right) \vee$
$\left(\left(\right.\right.$ Itin $_{i} . l=$ Itin $\left._{j} . l\right) \wedge\left(\right.$ Itin $_{i}$. tet $^{<}$Itin $_{j}$. tet $\left.)\right) \vee$
$\left(\left(\right.\right.$ Itin $_{i} . l=$ Itin $\left._{j} . l\right) \wedge\left(\right.$ Itin $_{i}$. tet $=I t i n_{j}$. tet $) \vee$
$\wedge\left(\right.$ Itin $_{i} . t t<$ Itin $\left.\left._{j} . t t\right)\right)$
The table IV page i (column Execution time of APD-CPS v2.0) identifies initial results of tests extracted from the realistic trimodal network. For the same request established in the example of version 1.0 and version 1.2, APD-CPS v2.0 returns only the first itinerary (modality number $l=3$ and an effective time of transportation tet $=40 \mathrm{~min}$). Considering this first itinerary as Best_Itinerary, in the second itinerary (modality number $l=4$ and an effective time of transportation tet $=40 \mathrm{~min})$, APD-CPS v2.0 stops the itinerary exploration when l exceed 3. It is useless to continue the calculation because this solution will not improve the result to provide for the traveler.
The table V page ii (column Execution time of APD-CPS v2.0) shows performance's gain after the application of the new $C u t$. We can notice the immediate beneficial effect by demonstrating the ability of our approach to address networks of 500 stations, and that in a reasonable time. For Test12, in the simulation part, the time required to achieve and find Best itinerary calculation is in the order of 4 secondes. This duration is equivalent to the time required to manage a network of 100 stations by using Algo version 1.2.

To further reduce the complexity, another solution is introduced (APD-CPS_v3.0). This version sorts accessible stations, from a reference station, by minimizing the degree
of correspondence and the proximity to the target station. When browsing stations to find the next intermediate station to consider, stations with an order of correspondence better than others are treated firstly. This increases the opportunity to find the optimal path in a shorter time by exploring fastly the best itineraries and then cutting more efficiently useless possible itineraries (composed of more correspondences, with a worst tet).
\rtimes_{3} is a law to all stations $S_{T s}$ according to the order of correspondence oc and the distance between the station $S_{i_{k}}$ and destination to $\left(S_{i_{l}}\right): \forall S_{i_{k}}, S_{i_{m}} \in$ Itin $_{i}$

$$
\begin{gathered}
S_{i_{k}} \rtimes_{3} S_{i_{m}} \Leftrightarrow \\
\left(\left(S_{i_{k}} \cdot o c>S_{i_{m}} . o c\right)\right) \vee \\
\left(\left(S_{i_{k}} . o c=S_{i_{m}} . o c\right) \wedge\left(d\left(S_{i_{k}}, S_{i_{l}}\right)<d\left(S_{m_{k}}, S_{i_{l}}\right)\right)\right)
\end{gathered}
$$

The figure 1 presents, synthetically the evolution of the execution time of the various versions of the algorithm APD_CPS depending on the network size (number of stations). This fig-

Figure 1: Cimo time-solving evolution based on the number of stations
ure resumes well the exponential behavior of Version 1.0 (red curve), and others. Curve 2 in green, presenting version 1.2, also evolves linearly on a logarithmic grid $\log _{10}$. Noticeably below the previous curve, the version 2.0 proposal allows considering networks with a size of 200 stations, and dozens of lines, for a number of modalities lower or equaling to 3 .

The blue curve (version 2.0) shows the ability of our Dynamic Programming algorithm approach Cut\&Price\&Share to apprehend real number of modalities, and for transterritories netwoks, sizes that become realistic. Thus, the
inclusion of transit schedules in station is no longer prohibitive to offer multimodal itineraries to travelers.

Curve 3 in pink shows the performance of the version 3.0 of the algorithm for treating networks with size 800 . This version 3.0, whose results are presented in the table V (column Execution time of APD-CPS v3.0) implements an ordering of neighboring stations that are under treatment. In this ordered list, the comparison function first favors minimizing the number of correspondences, and then the minimization of the distance from this station to the final destination. The size 800 is the cumulative size of the networks Optymo, CTPM and SCNF that are deserving the Urban area BelfortMontbéliard. At the date of March 2015, this size of these 3 networks number of stations, of lines, of races by line (size of timetables), and for 3 modalities Bus-Train-Car, our tests are well beyond the field requirements, and for a ratio that is favorable to our study 500/800 (cf. Bottom of the table V page ii).

Two other parameters are defined for comparing evolution between the different versions that are proposed:

- Le speed-up $S U$
- The relative gain $R G$

For two versions V1 et V2 we must have the following data: t_{1} is the time spent in order to find the best solution in V 1 . t_{2} is the time spent in order to find the best solution in V2.
t_{0} is the time of test trigger for both versions V1 and V2.
Le speed-up $S U$ provides information on the acceleration rate between versions V1 and V2

$$
\begin{gathered}
S U=\frac{t_{1}-t_{0}}{t_{2}-t_{0}} \\
\begin{cases}S U>1: & \mathrm{V} 2 \text { evolves more rapidly than V1 } \\
S U=1 & \text { V1 and V2 evolve with the same manner } \\
S U<1 & \text { V1 evolves more rapidly than V2 }\end{cases}
\end{gathered}
$$

The relative gain $R G$ provides information on the gain brought by a V2 version compared to another version V1.

$$
\begin{gathered}
\quad R G=\frac{t_{1}-t_{2}}{t_{1}-t_{0}} \\
\begin{cases}R G>0: & \mathrm{V} 2 \text { provides more gain than } \mathrm{V} 1 \\
R G=0 & \text { V1 et V2 evolve with the same manner } \\
R G<0 & \text { V1 provides more gain than V1 V2 }\end{cases}
\end{gathered}
$$

The table I page 9 identifies the variation of SU and RG between Version1.0 and Version1.2. This table shows that v1.2 is evolving more faster than v1.0 with providing more gain in the scale of execution time.
Test6 (network of 12 stations) indicates that v1.2 evolves 27750 times more faster than v1.0. The relative gain RG is adjacent to one (0.99) that is the most ideal value of RG.

The table II page 9 identifies the variation of SU and RG between Version1.2 and Version2.0. This table shows that v2.0 is evolving more faster than v1.2 with providing more gain in the scale of execution time.
From the test 9 (network of 100 stations), the relative gain is fixed at 0.99 which demonstrates that version 2.0 is able better than version 1.2 to manage big transport networks.
The table III page 9 identifies the variation of $S U$ and RG between Version2.0 and Version3.0. This table shows that v3.0

Number of stations	$S U$	$R G$
8	34.37	0.97
9	70.03	0.98
11	1531.55	0.99
12	27750	0.99
13	13007	0.99

Table I: Evolution of SU and RG between Version1.0 and Version 1.2

Number of stations	$S U$	$R G$
8	8	0.87
9	19.28	0.94
11	3.46	0.11
12	2.1	0.52
13	57.82	0.98
50	2.8	0.65
100	4245	0.99
200	3435	0.99
400	92500	0.99

Table II: Evolution of SU and RG between Version1.2 and Version2.0
is evolving more faster than v2.0.
In this comparison $S U$ has not exceeded 2 but while it's greater than 1 so the new version is faster than the old one. just note that for test 2.3 and 9 for networks 9 and 11 stations, the speed up is less than 1 (gain on less than 0), this is explained by that making an order for stations, according to the correspondence and the proximity of the destination increase the problem complexity for small-sized networks, but brings a reductive effect on the big networks.

Number of stations	$S U$	$R G$
8	1.25	0.2
9	0.63	-0.57
11	0.72	-0.38
12	1.26	0.21
13	1	0
50	1.97	0.49
100	1.95	0.48
200	1.55	0.36
400	1.19	0.16
500	1.23	0.2
600	1.07	0.07
700	1.11	0.1
800	1.04	0.04
1000	1.06	0.05
1200	1.007	0.007

Table III: Evolution of SU and RG between Version2.0 and Version3.0

V. Conclusion

We have proposed a comprehensive review of CIMO, a solution to calculate multimodal itinerary. This study was approved by tests from the different versions that are proposed. Two comparison criteria are defined for evaluating its (the speed up and the relative gain).

Our study proposed :

1) formalizing terrain data (Lines, Directions, correspondence stations, timetables) and queries of requests itineraries (departure at the earliest, arrival at the latest).
2) formalizing multiple constraints of the problem:

- the calculated and displayed itineraries with respect to the window time of the application.
- each itinerary is consistent with lines, their directions, and linear orderings of the stations, as well as with respect to the origin destination matrix .
and formalizing the multi-objectives of :
- Satisfying the constraints.
- minimizing the modality number.
- minimization of the effective time of transportation.
- minimizing of travel time including the correspondence waiting time.
- minimizing the standard deviation of waiting times in correspondences.
The Cimo algorithm performs a prior calculation of the optimal itineraries, modulo the combinatorial instantiations of real modalities (when multiple modalities serve a segment between 2 stations). It is in the second time of displaying generation that all other objectives are valued using the previously exposed hierarchy. By this approach, practical complexity of the algorithm is broken. The termination of Cimo, and the production of the best solution, is accelerated by ordering accessible stations from a reference station, depending on the degree of correspondence as well as the proximity to the target station (version 3.0).

The computational complexity of problem solving and progressive tests show the influence of the display economies, that of the cut and the acceleration of the ordering applied to the neighboring stations. This study shows that an optimal itinerary can be calculated from a dynamic programming algorithm cut and price and share from generation of 3-modal itineraries of 2 neighboring transport networks connected to the size of 2 prefectures serving 300000 inhabitants.

However, our medium-term ambition is to treat all the modalities of the territory. It is appropriate to treat the dynamism, and also access to soft modes (cycling, walking), to triggered public transport and also studying and integrating the dynamic carpooling.

REFERENCES

[1] Idriss HASSINE, and Philippe CANALDA. Cimo: an efficient 2-phases calculator of multimodal itineraries for real trans-territories based on a dynamic programming In The World Congress on Information Technology and Computer Applications, 2015.
[2] N. Borole, D. Rout, N. Goel, P. Vedagiri and T. V. Mathew. Multimodal Public Transit Trip Planner with Real-time Transit Data In journal Procedia - Social and Behavioral Sciences, volume 104, Proceedings of the 2nd Conference of Transportation Research Group of India (2nd $C T R G$), pages $8,2013$.
[3] C. Chen, R. Kitamura and J. Chen. Multimodal daily itinerary planner interactive programming approach In Transportation Research Board, volume 1676, pages $37-43,1999$.
[4] A. Ranade, M. Srikrischna, K. Tilak and M. Datar. Mumbai Navigator In Indian Journal of Transport Management, 2005.
[5] J.Q. Li, K. Zhou, L. Zhang, L. and W.-B. Zhang. A Multimodal Trip Planning System Incorporating the Park-and-Ride Mode and Real-Time Traffic and Transit Information, In Proceedings ITS World Congress, Volume 25, pages $65-76,2010$.
[6] J. Jariyasunant, D. Work, B. Kerkez, R. Sengupta, S. Glaser and A. Bayen. Mobile Transit Trip Planning with Real-Time Data, In Transportation Research Board 89th Annual Meeting, Volume 2, pages 139 146, 2010.
[7] T. Walsh and L. Antsfeld. Finding multi-criteria optimal paths in multimodal public transportation networks using transit algorithm. In 19th world Congress on Intelligent Transport Systems, 2012.
[8] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisbe rger, C., Harrelson, V., Raychev and F. Viger. Fast Routing in Very Large Public Transportation Networks using Transfer Patterns. In European Symposium on Algorithms, Lecture Notes in Computer Science, Volume 6346, pages 290-301, 2010.
[9] Transit Google, http://www.google.com/intl/en/landing/transit.
[10] J.-Q. Li, K. Zhou, L. Zhang and W.-B. Zhang. A multimodal trip planning system with real-time traffic and transit information. In Journal of Intelligent Transportation Systems, 16(2), pages $60-69,2012$.
[11] B. Lovepeople and A. Lovescience. My Searcher is Rich In Proceedings Jokes'94, pages 107-120, Miraflores, Spain, 1994
[12] J.-M. Su and C.-H. Chang. The multimodal trip planning system of intercity transportation in Taiwan. In Expert Systems with Applications, Volume 37, pages $6850-6861,2010$.
[13] V. Spitadakis and M. Fostieri. WISETRIP- International multimodal journey planning and delivery of personalized trip information In Procedia Social and Behavioral Sciences, Volume 48, pages 1294-1303, 2012.
[14] W. Xu, S. He, R. Son and S. Chaudhry. Finding the K shortest paths in a schedule-based transit network In Computers and Operations Research, Volume 39, Elsevier, pages 1812 - 1826, 2012.
[15] M. Friedrich, I. Hofsab and S. Wekeck. Timetable-based transit assignment using branch and bound. In Proceedings of 80th annual of transportation research board, Washington D.C., USA, 2001.
[16] NJ. vander Zijpp, and S. Fiorenzo Catalano. Path enumeration by finding the constrained K-shortest paths In Transportation Research-B, number 35, pages $545-63,2005$.
[17] Mohamed Amine Kammoun. Conception d'un systme d'information pour l'aide au dplacement multimodale : Une approche multi-agents pour la recherche et la composition des itinraires en ligne cole centrale de Lille, 2007
[18] Christian Artigues, Marie-Jos Huguet, Fallou Gueye, Frderic Schettini, Laurent Dezou. State-based accelerations and bidirectional search for bi-objective multimodal shortest paths. In Transportation Research Part C: Emerging Technologies, Elsevier, pages 233 - 259, 2013.
[19] Dominik Kirchler. Efficient routing on multi-modal transportation networks. Data Structures and Algorithms. In Ecole Polytechnique X, 2013.

Idriss HASSINE received his engineering degree in computer science from the National Engineering School of Tunis (ENIT) in 2014. Currently he performs his research internship at FEMTO-ST institute in Montbliard, France in order to obtain the master degree in distributed and mobile computing from Technological University of Belfort-Montbliard.

Philippe CANALDA received his Ph.D (1997) from the INRIA Research Centre and the University of Orleans. He worked 2 years in the Associated Compiler Expert start-up on real-time optimization compilers, then 2 years at LORIA research institute on synchronized and complex processes. Since 2001, as assistant professor at UFC, he is focusing on dynamic matching algorithm and Very Reactive Complex Processes to provide safe and secure mobility services for ITS: notably On Demand Transportation applications, and Real-Time Carpooling applications. He participates as active member to the French (and European) Normalization of Real-Time ITS services since 2008. He's also inventing new combined positioning system wireless-based, position person in urban or periurban situation to provide continuity of mobile services.

ApPENDIX

Timeslot extraction [6H-8H30] From timetable of OPTYMO BUS' NETWORK, CTPM BUS' NETWORK AND SNCF TRAIN' NETWORK

OPTYMO BUS' network of Belfort

ligne1 : Foch Belfort \rightarrow Gare Belfort

Foch Belfort	6 h 15	6 h 35	6 h 55	7 h 10	7 h 20	7 h 27	7 h 34	7 h 41	7 h 48	7 h 55
Gare Belfort	6 h 20	6 h 40	7 h 00	7 h 15	7 h 25	7 h 32	7 h 39	7 h 46	7 h 53	8 h 00

ligne1: Gare Belfort \rightarrow Foch Belfort

```
Gare Belfort 6h22 6h38
Foch Belfort 6h26 6h42 6h52 6h59 7h06 7h13 7h20 7h27 7h34 7h41 7h48
```

ligne2 : Multiplexe \rightarrow Liberté Madrid

Multiplexe	6 h 17	6 h 31	6 h 45	7 h 07	7 h 14	7 h 28	7 h 42	7 h 56
Gare Belfort	6 h 20	6 h 34	6 h 48	7 h 10	7 h 17	7 h 31	7 h 45	7 h 59
Liberté Madrid	6 h 23	6 h 37	6 h 51	7 h 10	7 h 13	7 h 34	7 h 48	8 h 02

ligne2 : Liberté Madrid \rightarrow Multiplexe

Liberté Madrid	6 h 13	6 h 52	7h06	7h20	7h41	7h48	8 h 02
Gare Belfort	6 h 16	6 h 55	7 h 09	7 h 23	7 h 44	7 h 51	8 h 05
Multiplexe	6 h 19	6 h 58	7h12	7h26	7h47	7 h 54	8 h 08

ligne3 : Multiplexe Belfort \rightarrow Gare Belfort

Multiplexe Belfort	6 h 19	6 h 39	6 h 49	7 h 09	7 h 19	7 h 29	7 h 39	7 h 49	7 h 59
Gare Belfort	6 h 22	6 h 42	6 h 52	7 h 12	7 h 22	7 h 32	7 h 42	7 h 52	8 h 02

ligne3 : Gare Belfort \rightarrow Multiplexe Belfort

Gare Belfort	6 h 18	6 h 29	6 h 38	6 h 48	7 h 59	7 h 08	7 h 18	7 h 28	7 h 38
MultiplexeBelfort	6 h 21	6 h 32	6 h 41	6 h 51	7 h 02	7 h 11	7 h 21	7 h 31	7 h 41

CTPM BUS' network of Montbéliard

ligne1: Gare Montbéliard \rightarrow Temple

Gare Montbéliard	6 h 11	6 h 25	6 h 39	6 h 53	7 h 16	7 h 26	7 h 46
Place Ferrer	6 h 15	6 h 29	6 h 43	6 h 57	7 h 20	7 h 30	7 h 50
Jean Moulin	6 h 22	6 h 36	6 h 50	7 h 04	7 h 28	7 h 38	7 h 59
Temple	6 h 33	6 h 46	7 h 00	7 h 15	7 h 39	7 h 49	8 h 11

ligne1 :Temple \rightarrow Gare Montbéliard

Temple	6 h 14	6 h 39	6 h 52	7 h 10	7 h 25	7 h 40	7 h 55
Jean Moulin	6 h 25	6 h 50	7 h 04	7 h 22	7 h 37	7 h 52	8 h 06
Place Ferrer	6 h 33	6 h 58	7 h 12	7 h 30	7 h 45	8 h 00	8 h 14
Gare Montbéliard	6 h 36	7 h 01	7 h 15	7 h 33	7 h 48	8 h 03	8 h 17

ligne2 : Place Ferrer \rightarrow Temple

Place Ferrer	6 h 35				7h17			
Gare Montbéliard	6 h 09	6 h 38	6 h 52	7 h 06	7 h 20	7 h 41	7 h 51	
Temple	6 h 31	7 h 00	7 h 16	7 h 30	7 h 44	8 h 05	8 h 14	

ligne2 :Temple \rightarrow Gare Montbéliard

Temple	6h07	6 h 22	6 h 37	6 h 54	7 h 05	7 h 23	7 h 39	7 h 52
Gare Montbéliard	6 h 27	7 h 42	7 h 57	7 h 16	7 h 29	7 h 47	8 h 03	8 h 15

ligne3: Gare Montbéliard \rightarrow Place Ferrer

$$
\begin{array}{cllll}
\text { Gare Montbéliard } & 6 \mathrm{~h} 16 & 6 \mathrm{~h} 55 & 7 \mathrm{~h} 24 & 7 \mathrm{~h} 41 \\
\text { Place Ferrer } & 6 \mathrm{~h} 19 & 6 \mathrm{~h} 58 & 7 \mathrm{~h} 28 & 7 \mathrm{~h} 45
\end{array}
$$

ligne3 :Place Ferrer \rightarrow Gare Montbéliard

$$
\begin{array}{cccc}
\text { Place Ferrer } & 6 \mathrm{~h} 18 & 6 \mathrm{~h} 40 & 7 \mathrm{~h} 01 \\
\text { Gare Montbéliard } & 6 \mathrm{~h} 21 & 6 \mathrm{~h} 43 & 7 \mathrm{~h} 04
\end{array}
$$

ligne4 : Place Ferrer \rightarrow Jean Moulin

Place Ferrer	6 h 42	7 h 35	8 h 12
Jean Moulin	6 h 49	7 h 44	8 h 21

ligne4 :Jean Moulin \rightarrow Place Ferrer

```
Jean Moulin 6h15 7h11 7h37
Place Ferrer 6h22 7h19 7h45
```


SNCF TRAIN’ network Belfort-Montbéliard

Gare Belfort \rightarrow Gare Montbéliard

Train Number	Ter 95860	Ter 94008	Ter 94832	Ter 94014
Gare Belfort	6h24	7h04	8 h 04	8 h 24
Hricourt	6h31	7h11	8 h 11	8 h 31
Gare Montbliard	6 h 39	7h17	8 h 17	8 h 39

Gare Montbéliard \rightarrow Gare Belfort

Train Number	Ter 94003	Ter 94007	Ter 95863	Ter 95833	Ter 94103
Gare Montbéliard	6 h 40	7 h 41	8 h 13	8 h 27	8 h 47
Hricourt	6 h 47	7 h 50	8 h 20	8 h 34	8 h 55
Gare Belfort	6 h 55	7 h 56	8 h 29	8 h 41	9 h 01

Test Measurement

The table IV identifies initial results. These first results are basically made on the first set of tests extracted from a realistic trimodal network of Urban Area Belfort-Montbéliard for a request established by the traveler with a departure station is Liberté Madrid (Belfort) and an arrival station is Temple (Montbéliard).
The table V identifies results obtained by applying different version of APD-CPS on the random data generator.

from	to	APD_CPS_v1.0				
		Temps_exec	Complexity	nbIt	l	tet
station0	station3	0sec. 056ms	19	2	3	$\begin{aligned} & \hline 40 \mathrm{~min} \\ & 40 \mathrm{~min} \end{aligned}$
station5	station8	0sec. 026 ms	19	2	4	$\begin{aligned} & 54 \mathrm{~min} \\ & 29 \mathrm{~min} \end{aligned}$
station7	station3	0sec. 050ms	19	2	3	$\begin{aligned} & 40 \mathrm{~min} \\ & 40 \mathrm{~min} \end{aligned}$
station7	station6	0sec. 052ms	19	2	5 3	$\begin{aligned} & 58 \mathrm{~min} \\ & 22 \mathrm{~min} \end{aligned}$
station5	station6	0sec. 025ms	19	2	5 3	$\begin{aligned} & 62 \mathrm{~min} \\ & 23 \mathrm{~min} \end{aligned}$
station0	station8	0sec. 053ms	19	2	4	$\begin{aligned} & 52 \mathrm{~min} \\ & 27 \mathrm{~min} \end{aligned}$
station1	station8	0sec. 023ms	17	2	3 3	$\begin{aligned} & 49 \mathrm{~min} \\ & 24 \mathrm{~min} \end{aligned}$
from	to	APD_CPS_v1.2				
		Temps_exec	Complexit	nbIt	l	tet
station0	station3	0sec. 021 ms	13	1	3	40min
station5	station8	0sec. 010 ms	9	0		
station7	station3	0sec. 021 ms	13	1	3	40min
station7	station6	0sec. 034ms	13	1	3	22 min
station5	station6	0sec. 020 ms	13	1	3	23 min
station0	station8	0sec. 010 ms	9	0		
station1	station8	0sec. 023ms	17	2	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 49 \mathrm{~min} \\ & 24 \mathrm{~min} \end{aligned}$
from	to	APD_CPS_v2.0				
		Temps_exec	Complexit	nbIt	l	tet
station0	station3	0sec. 056 ms	10	1	3	40min
station5	station8	0sec. 064ms	19	2	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 54 \mathrm{~min} \\ & 29 \mathrm{~min} \end{aligned}$
station7	station3	0sec. 058 ms	10	1	3	40min
station7	station6	0sec. 042ms	13	2	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 58 \mathrm{~min} \\ & 22 \mathrm{~min} \end{aligned}$
station5	station6	0sec. 089ms	19	2	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 62 \mathrm{~min} \\ & 23 \mathrm{~min} \end{aligned}$
station0	station8	0sec. 089ms	19	2	4	$\begin{aligned} & 52 \mathrm{~min} \\ & 27 \mathrm{~min} \end{aligned}$
station1	station8	0sec. 028ms	17	2	3 3	$\begin{aligned} & 49 \mathrm{~min} \\ & 24 \mathrm{~min} \end{aligned}$

Table IV: Tests Mesurements for different versions of ALGO APD_CPS applied on realistic trimodal network of Urban Area Belfort-Montbéliard

	$n b S$	$n b L$	$\overline{n b S / L}$	$\overline{n b C / L}$	from	to	Temps_exec de APD_CPS				nblt de APD_CPS			
							v1.0	v1.2	v2.0	v3.0	v1.0	v1.2	v2.0	v3.0
Test1	8	8	7	7	3	1	0,275sec	0,008sec	0,001 sec	0,0008sec	227	5	2	1
Test2	9	8	6	6,8	5	2	1,3sec	0,016sec	0,0008sec	0,0007sec	210	6	3	1
Test3			7	7	8	0	$0,591 \mathrm{sec}$	$0,011 \mathrm{sec}$	0,0006sec	$0,0015 \mathrm{sec}$	759	9	1	1
Test4	11	8	8	8	4	10	9,045sec	0,007	0,0006sec	0,0006sec	3406	3	1	1
Test5	11	8	8	8	6	4	4,739 sec	0,002sec	0,002sec	0,003sec	1880	4	4	4
Test6	12	8	6	6	10	2	1 min . 51 sec	0,004sec	0,0019sec	$0,0015 \mathrm{sec}$	52165	6	1	1
Test7	13	8	4	4,8	5	4	2 min . 53 sec	0,0133sec	0,00023sec	$0,00023 \mathrm{sec}$	74895	22	1	1
Test8	50	8	22	22	41	23	*	0,6268sec	0,217sec	0,110sec	*	15	2	1
Test9	100	8	43	43	61	73	*	9,765sec	0,0023sec	$0,0015 \mathrm{sec}$	*	194	1	1
			43	43	10	81	*	*	1,933sec	$0,817 \mathrm{sec}$	*	*	1	1
			43	43	19	51	*	*	1,332 sec	$0,79 \mathrm{sec}$	*	*	1	1
			43	43	5	71	*	*	1,82sec	1 sec	*	*	1	1
Test10	200	8	81	80,4	64	27	*	2,210sec	0,0017 sec	0,00079sec	*	24	1	1
			81	80,4	152	111	*	10,5sec	0,002sec	0,002sec	*	9	1	1
			75	80,4	50	171	*	*	7,988sec	5,785 sec	*	*	1	1
			72	72	190	101	*	*	5,606sec	3,290sec	*	*	1	1
			70	67,6	158	47	*	*	1,916sec	0,868sec	*	*	1	1
Test11	400	8	158	158,4	160	53	*	3 min . 5 sec	0,002sec	0,0014sec	*	96	1	1
			137	134	278	143	*	*	13,207 sec	10,49sec	*	*	1	1
			156	153,2	71	103	*	*	8,061 sec	$5,028 \mathrm{sec}$	*	*	1	1
			137	130,4	18	313	*	*	48,639sec	$42,805 \mathrm{sec}$	*	*	1	1
Test12	500	8	203	201,2	410	27	*	*	0,0126sec	0,0038sec	*	*	1	1
			202	200,8	317	115	*	*	4,366	$2,737 \mathrm{sec}$	*	*	1	1
			204	198,6	131	228	*	*	24,960	22,335sec	*	*	1	1
			203	201,2	111	492	*	*	1 min . 58 sec	1 min . 34 sec	*	*	1	1
Test13	600	8	212	211,2	473	343	*	*	2 min . 19 sec	2 min	*	*	1	1
			212	211,2	211	501	*	*	2 min . 30 sec	2 min . 19 sec	*	*	1	1
			223	221,2	521	51	*	*	0,500sec	0,300sec	*	*	1	1
			192	188,8	31	481	*	*	2 min . 44 sec	2 min . 42 sec	*	*	3	3
Test14	700	8	241	230	271	437	*	*	3 min . 19 sec	2 min . 52 sec	*	*	1	1
			263	254,6	131	681	*	*	4 min .45 sec	4 min .17 sec	*	*	1	1
			212	192,8	73	527	*	*	4 min . 23 sec	4 min . 9 sec	*	*	1	1
			261	237,2	325	692	*	*	5 min .3 sec	4 min .20 sec	*	*	1	1
Test15	800	8	356	352,2	340	67	*	*	2,756sec	2,203sec	*	*	1	1
			356	352,2	345	700	*	*	6 min . 36 sec	6 min . 6 sec	*	*	1	1
			284	262,2	455	792	*	*	6 min .39 sec	6 min .23 sec	*	*	1	1
			289	273,2	505	691	*	*	6 min .12 sec	6 min .12 sec	*	*	1	1
			310	303,2	485	721	*	*	6 min .26 sec	6 min	*	*	1	1
Test16	1000	8	390	390,2	845	101	*	*	11,565sec	6,683sec	*	*	1	1
			390	390,2	665	304	*	*	2 min .27 sec	2 min . 6 sec	*	*	1	1
			327	292,6	185	823	*	*	11 min .34 sec	11 min . 14 sec	*	*	1	1
			368	352,2	211	932	*	*	15 min . 38 sec	14 min . 23 sec	*	*	1	1
			370	348,4	351	843	*	*	14 min	13 min . 35 sec	*	*	1	1
Test17	1200	8	485	479	1020	1001	*	*	23 min .48 sec	23 min .31 sec	*	*	2	1
			485	479	131	808	*	*	16 min .51 sec	16 min . 50 sec	*	*	1	1
Trans-territory network	CTPM : 392	11	32,4	32,4										
	OPTYMO: 112	5	24,8	8,5										
	SNCF : 3	5	3	2										

Table V: Tests Mesurements for different versions of ALGO APD_CPS applied on the random data generator

[^0]: ${ }^{1}$ This work was partially funded by the University of Bourgogne-FrancheComté, the University of Haute-Alsace and the Technological University of Belfort-Montbéliard. These three universities are involved in the master 2 Mobile and Distributed Computing.

[^1]: ${ }^{2}$ Outside holdings of greatest metropolitan poles as l'le de France, Grand Toulouse, Grand Lyon, Bombay [4], Sydney [14], [7], ...

[^2]: ${ }^{3}$ However, CIMO aims to manage all possible moves through different modes of transport in the territory of the urban area Belfort-Montbéliard.

[^3]: ${ }^{4}$ In this study, we consider the family of lines that can be defined with a departure station connected to a terminal's one $S_{i_{1}} \rightarrow S_{i_{t_{i}}}$.

[^4]: ${ }^{5}$ In this study, the performance of the calculator with realistic tests and high size is not optimized. Neither the choice of the language C, and optimization possibilities of the compiled code and the best selection and use of libraries, neither a powerful dedicated machine, neither a parallelized work, neither a working static preparation tasks, is assessed at this stage of our work.

